Groupoid Extensions of Mapping Class Representations for Bordered Surfaces

نویسنده

  • R. C. PENNER
چکیده

The mapping class group of a surface with one boundary component admits numerous interesting representations including as a group of automorphisms of a free group and as a group of symplectic transformations. Insofar as the mapping class group can be identified with the fundamental group of Riemann’s moduli space, it is furthermore identified with a subgroup of the fundamental path groupoid upon choosing a basepoint. A combinatorial model for this, the mapping class groupoid, arises from the invariant cell decomposition of Teichmüller space, whose fundamental path groupoid is called the Ptolemy groupoid. It is natural to try to extend representations of the mapping class group to the mapping class groupoid, i.e., construct a homomorphism from the mapping class groupoid to the same target that extends the given representations arising from various choices of basepoint. Among others, we extend both aforementioned representations to the groupoid level in this sense, where the symplectic representation is lifted both rationally and integrally. The techniques of proof include several algorithms involving fatgraphs and chord diagrams. The former extension is given by explicit formulae depending upon six essential cases, and the kernel and image of the groupoid representation are computed. Furthermore, this provides groupoid extensions of any representation of the mapping class group that factors through its action on the fundamental group of the surface including, for instance, the Magnus representation and representations on the moduli spaces of flat connections. 1991 Mathematics Subject Classification. MSC 20F38, 05C25, 20F34, 57M99, 32G15, 14H10, 20F99.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groupoid Lifts of Mapping Class Representations for Bordered Surfaces

The mapping class group of a surface with one boundary component admits numerous interesting representations including as a group of automorphisms of a free group and as a group of symplectic transformations. Insofar as the mapping class group can be identified with the fundamental group of Riemann’s moduli space, it is furthermore identified with a subgroup of the fundamental path groupoid upo...

متن کامل

Universal Central Extension of Current Superalgebras

Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras  are very impo...

متن کامل

An Integral Graph Complex for Bordered Surfaces

We define a category Fat whose objects are isomorphism classes of bordered fat graphs and show that its geometric realization is a classifying space for the bordered mapping class groups. We then construct a CW structure on this geometric realization with one cell per isomorphism classes of bordered fat graphs. Its cellular cochain complex gives a bordered graph complex which computes the integ...

متن کامل

The Unstable Integral Homology of the Mapping Class Groups of a Surface with Boundary

We construct a graph complex calculating the integral homology of the bordered mapping class groups. We compute the homology of the bordered mapping class groups of the surfaces S1,1, S1,2 and S2,1. Using the circle action on this graph complex, we build a double complex and a spectral sequence converging to the homology of the unbordered mapping class groups. We compute the homology of the pun...

متن کامل

Teichmüller Theory of Bordered Surfaces

We propose the graph description of Teichmüller theory of surfaces with marked points on boundary components (bordered surfaces). Introducing new parameters, we formulate this theory in terms of hyperbolic geometry. We can then describe both classical and quantum theories having the proper number of Thurston variables (foliation-shear coordinates), mapping-class group invariance (both classical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009